请在Chrome、Firefox等现代浏览器浏览本站。如果需要合作请 点击 加我 QQ 说你的需求。

透视投影原理详解

八卦 admin

透视投影是3D固定流水线的重要组成部分,是将相机空间中的点从视锥体(frustum)变换到规则观察体(Canonical View Volume)中,待裁剪完毕后进行透视除法的行为。在算法中它是通过透视矩阵乘

  透视投影是3D固定流水线的重要组成部分,是将相机空间中的点从视锥体(frustum)变换到规则观察体(Canonical View Volume)中,待裁剪完毕后进行透视除法的行为。在算法中它是通过透视矩阵乘法和透视除法两步完成的。?

  ? ? ?透视投影变换是令很多刚刚进入3D图形领域的开发人员感到迷惑乃至神秘的一个图形技术。其中的理解困难在于步骤繁琐,对一些基础知识过分依赖,一旦对它们中的任何地方感到陌生,立刻导致理解停止不前。

  ? ? 没错,主流的3D APIs如OpenGL、D3D的确把具体的透视投影细节封装起来,比如gluPerspective(?) 就可以根据输入生成一个透视投影矩阵。而且在大多数情况下不需要了解具体的内幕算法也可以完成任务。但是你不觉得,如果想要成为一个职业的图形程序员或游 戏开发者,就应该真正降伏透视投影这个家伙么?我们先从必需的基础知识着手,一步一步深入下去(这些知识在很多地方可以单独找到,但我从来没有在同一个地 方全部找到,但是你现在找到了)。

  ? ? 我们首先介绍两个必须掌握的知识。有了它们,我们才不至于在理解透视投影变换的过程中迷失方向(这里会使用到向量几何、矩阵的部分知识,如果你对此不是很熟悉,可以参考

  image

  可以找到一组坐标(v1,v2,v3),使得

  ?v=v1 a + v2 b + v3 c (1)

  而对于一个点p,则可以找到一组坐标(p1,p2,p3),使得

  p – o=p1 a + p2 b + p3 c (2)

  从上面对向量和点的表达,我们可以看出为了在坐标系中表示一个点(如p),我们把点的位置看作是对这个基的原点o所进行的一个位移,即一个向量——p – o(有的书中把这样的向量叫做位置向量——起始于坐标原点的特殊向量),我们在表达这个向量的同时用等价的方式表达出了点p:

  p=o + p1 a + p2 b + p3 c (3)

  (1)(3)是坐标系下表达一个向量和点的不同表达方式。这里可以看出,虽然都是用代数分量的形式表达向量和点,但表达一个点比一个向量需要额外的信息。如果我写出一个代数分量表达(1, 4, 7),谁知道它是个向量还是个点!

  我们现在把(1)(3)写成矩阵的形式:

  image

  这里(a,b,c,o)是坐标基矩阵,右边的列向量分别是向量v和点p在基下的坐标。

喜欢 (0) or 分享 (0)